Metamath Proof Explorer


Theorem numsuc

Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numcl.2 𝐵 ∈ ℕ0
numsuc.4 ( 𝐵 + 1 ) = 𝐶
numsuc.5 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝐵 )
Assertion numsuc ( 𝑁 + 1 ) = ( ( 𝑇 · 𝐴 ) + 𝐶 )

Proof

Step Hyp Ref Expression
1 numnncl.1 𝑇 ∈ ℕ0
2 numnncl.2 𝐴 ∈ ℕ0
3 numcl.2 𝐵 ∈ ℕ0
4 numsuc.4 ( 𝐵 + 1 ) = 𝐶
5 numsuc.5 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝐵 )
6 5 oveq1i ( 𝑁 + 1 ) = ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) + 1 )
7 1 2 nn0mulcli ( 𝑇 · 𝐴 ) ∈ ℕ0
8 7 nn0cni ( 𝑇 · 𝐴 ) ∈ ℂ
9 3 nn0cni 𝐵 ∈ ℂ
10 ax-1cn 1 ∈ ℂ
11 8 9 10 addassi ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) + 1 ) = ( ( 𝑇 · 𝐴 ) + ( 𝐵 + 1 ) )
12 4 oveq2i ( ( 𝑇 · 𝐴 ) + ( 𝐵 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝐶 )
13 6 11 12 3eqtri ( 𝑁 + 1 ) = ( ( 𝑇 · 𝐴 ) + 𝐶 )