| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numsucc.1 | ⊢ 𝑌  ∈  ℕ0 | 
						
							| 2 |  | numsucc.2 | ⊢ 𝑇  =  ( 𝑌  +  1 ) | 
						
							| 3 |  | numsucc.3 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 4 |  | numsucc.4 | ⊢ ( 𝐴  +  1 )  =  𝐵 | 
						
							| 5 |  | numsucc.5 | ⊢ 𝑁  =  ( ( 𝑇  ·  𝐴 )  +  𝑌 ) | 
						
							| 6 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 7 | 1 6 | nn0addcli | ⊢ ( 𝑌  +  1 )  ∈  ℕ0 | 
						
							| 8 | 2 7 | eqeltri | ⊢ 𝑇  ∈  ℕ0 | 
						
							| 9 | 8 | nn0cni | ⊢ 𝑇  ∈  ℂ | 
						
							| 10 | 9 | mulridi | ⊢ ( 𝑇  ·  1 )  =  𝑇 | 
						
							| 11 | 10 | oveq2i | ⊢ ( ( 𝑇  ·  𝐴 )  +  ( 𝑇  ·  1 ) )  =  ( ( 𝑇  ·  𝐴 )  +  𝑇 ) | 
						
							| 12 | 3 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 13 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 14 | 9 12 13 | adddii | ⊢ ( 𝑇  ·  ( 𝐴  +  1 ) )  =  ( ( 𝑇  ·  𝐴 )  +  ( 𝑇  ·  1 ) ) | 
						
							| 15 | 2 | eqcomi | ⊢ ( 𝑌  +  1 )  =  𝑇 | 
						
							| 16 | 8 3 1 15 5 | numsuc | ⊢ ( 𝑁  +  1 )  =  ( ( 𝑇  ·  𝐴 )  +  𝑇 ) | 
						
							| 17 | 11 14 16 | 3eqtr4ri | ⊢ ( 𝑁  +  1 )  =  ( 𝑇  ·  ( 𝐴  +  1 ) ) | 
						
							| 18 | 4 | oveq2i | ⊢ ( 𝑇  ·  ( 𝐴  +  1 ) )  =  ( 𝑇  ·  𝐵 ) | 
						
							| 19 | 3 6 | nn0addcli | ⊢ ( 𝐴  +  1 )  ∈  ℕ0 | 
						
							| 20 | 4 19 | eqeltrri | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 21 | 8 20 | num0u | ⊢ ( 𝑇  ·  𝐵 )  =  ( ( 𝑇  ·  𝐵 )  +  0 ) | 
						
							| 22 | 17 18 21 | 3eqtri | ⊢ ( 𝑁  +  1 )  =  ( ( 𝑇  ·  𝐵 )  +  0 ) |