Metamath Proof Explorer


Theorem numth

Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis numth.1 𝐴 ∈ V
Assertion numth 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥1-1-onto𝐴

Proof

Step Hyp Ref Expression
1 numth.1 𝐴 ∈ V
2 1 numth2 𝑥 ∈ On 𝑥𝐴
3 bren ( 𝑥𝐴 ↔ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝐴 )
4 3 rexbii ( ∃ 𝑥 ∈ On 𝑥𝐴 ↔ ∃ 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥1-1-onto𝐴 )
5 2 4 mpbi 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥1-1-onto𝐴