Metamath Proof Explorer


Theorem numth2

Description: Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 20-Oct-2003)

Ref Expression
Hypothesis numth.1 𝐴 ∈ V
Assertion numth2 𝑥 ∈ On 𝑥𝐴

Proof

Step Hyp Ref Expression
1 numth.1 𝐴 ∈ V
2 numth3 ( 𝐴 ∈ V → 𝐴 ∈ dom card )
3 1 2 ax-mp 𝐴 ∈ dom card
4 isnum2 ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥𝐴 )
5 3 4 mpbi 𝑥 ∈ On 𝑥𝐴