Metamath Proof Explorer


Theorem numthcor

Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion numthcor ( 𝐴𝑉 → ∃ 𝑥 ∈ On 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
2 1 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑦𝑥 ↔ ∃ 𝑥 ∈ On 𝐴𝑥 ) )
3 vpwex 𝒫 𝑦 ∈ V
4 3 numth2 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦
5 vex 𝑦 ∈ V
6 5 canth2 𝑦 ≺ 𝒫 𝑦
7 ensym ( 𝑥 ≈ 𝒫 𝑦 → 𝒫 𝑦𝑥 )
8 sdomentr ( ( 𝑦 ≺ 𝒫 𝑦 ∧ 𝒫 𝑦𝑥 ) → 𝑦𝑥 )
9 6 7 8 sylancr ( 𝑥 ≈ 𝒫 𝑦𝑦𝑥 )
10 9 reximi ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 → ∃ 𝑥 ∈ On 𝑦𝑥 )
11 4 10 ax-mp 𝑥 ∈ On 𝑦𝑥
12 2 11 vtoclg ( 𝐴𝑉 → ∃ 𝑥 ∈ On 𝐴𝑥 )