| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nv0id.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nv0id.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | nv0id.6 | ⊢ 𝑍  =  ( 0vec ‘ 𝑈 ) | 
						
							| 4 | 2 3 | 0vfval | ⊢ ( 𝑈  ∈  NrmCVec  →  𝑍  =  ( GId ‘ 𝐺 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝐴 𝐺 𝑍 )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑍 )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 7 | 2 | nvgrp | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐺  ∈  GrpOp ) | 
						
							| 8 | 1 2 | bafval | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 9 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 10 | 8 9 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 11 | 7 10 | sylan | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 12 | 6 11 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑍 )  =  𝐴 ) |