Step |
Hyp |
Ref |
Expression |
1 |
|
nv0id.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nv0id.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nv0id.6 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
4 |
2 3
|
0vfval |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 𝐺 𝑍 ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
7 |
2
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
8 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
9 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
10 |
8 9
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
11 |
7 10
|
sylan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
12 |
6 11
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |