Metamath Proof Explorer


Theorem nvaddsub

Description: Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvpncan2.2 𝐺 = ( +𝑣𝑈 )
nvpncan2.3 𝑀 = ( −𝑣𝑈 )
Assertion nvaddsub ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐶 ) = ( ( 𝐴 𝑀 𝐶 ) 𝐺 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nvpncan2.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvpncan2.2 𝐺 = ( +𝑣𝑈 )
3 nvpncan2.3 𝑀 = ( −𝑣𝑈 )
4 2 nvablo ( 𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp )
5 1 2 bafval 𝑋 = ran 𝐺
6 2 3 vsfval 𝑀 = ( /𝑔𝐺 )
7 5 6 ablomuldiv ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐶 ) = ( ( 𝐴 𝑀 𝐶 ) 𝐺 𝐵 ) )
8 4 7 sylan ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐶 ) = ( ( 𝐴 𝑀 𝐶 ) 𝐺 𝐵 ) )