Metamath Proof Explorer
Description: The norm of a normed complex vector space is a real number.
(Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
nvf.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
|
|
nvf.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
|
Assertion |
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nvf.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvf.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
3 |
1 2
|
nvf |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : 𝑋 ⟶ ℝ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |