Metamath Proof Explorer
		
		
		
		Description:  The norm of a normed complex vector space is a real number.
         (Contributed by NM, 20-Apr-2007)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nvf.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
					
						|  |  | nvf.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
					
						|  |  | nvcli.9 | ⊢ 𝑈  ∈  NrmCVec | 
					
						|  |  | nvcli.7 | ⊢ 𝐴  ∈  𝑋 | 
				
					|  | Assertion | nvcli | ⊢  ( 𝑁 ‘ 𝐴 )  ∈  ℝ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvf.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvf.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 3 |  | nvcli.9 | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 4 |  | nvcli.7 | ⊢ 𝐴  ∈  𝑋 | 
						
							| 5 | 1 2 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 𝑁 ‘ 𝐴 )  ∈  ℝ |