Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvcnlm | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isnvc | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |