Metamath Proof Explorer


Theorem nvcom

Description: The vector addition (group) operation is commutative. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvgcl.2 𝐺 = ( +𝑣𝑈 )
Assertion nvcom ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nvgcl.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvgcl.2 𝐺 = ( +𝑣𝑈 )
3 2 nvablo ( 𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp )
4 1 2 bafval 𝑋 = ran 𝐺
5 4 ablocom ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )
6 3 5 syl3an1 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) )