Description: The vector addition (group) operation is commutative. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| Assertion | nvcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nvgcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | 2 | nvablo | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp ) | 
| 4 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 | 
| 5 | 4 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) | 
| 6 | 3 5 | syl3an1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |