| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvcnlm | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmMod ) | 
						
							| 2 |  | nlmtlm | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  TopMod ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  TopMod ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 | 4 | nlmnrg | ⊢ ( 𝑊  ∈  NrmMod  →  ( Scalar ‘ 𝑊 )  ∈  NrmRing ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  ( Scalar ‘ 𝑊 )  ∈  NrmRing ) | 
						
							| 7 |  | nvclvec | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  LVec ) | 
						
							| 8 | 4 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 10 |  | nrgtdrg | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  NrmRing  ∧  ( Scalar ‘ 𝑊 )  ∈  DivRing )  →  ( Scalar ‘ 𝑊 )  ∈  TopDRing ) | 
						
							| 11 | 6 9 10 | syl2anc | ⊢ ( 𝑊  ∈  NrmVec  →  ( Scalar ‘ 𝑊 )  ∈  TopDRing ) | 
						
							| 12 | 4 | istvc | ⊢ ( 𝑊  ∈  TopVec  ↔  ( 𝑊  ∈  TopMod  ∧  ( Scalar ‘ 𝑊 )  ∈  TopDRing ) ) | 
						
							| 13 | 3 11 12 | sylanbrc | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  TopVec ) |