| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvf.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvf.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 3 |  | eqid | ⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑈 )  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 5 |  | eqid | ⊢ ( 0vec ‘ 𝑈 )  =  ( 0vec ‘ 𝑈 ) | 
						
							| 6 | 1 3 4 5 2 | nvi | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 〈 (  +𝑣  ‘ 𝑈 ) ,  (  ·𝑠OLD  ‘ 𝑈 ) 〉  ∈  CVecOLD  ∧  𝑁 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  ( 0vec ‘ 𝑈 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 (  ·𝑠OLD  ‘ 𝑈 ) 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 (  +𝑣  ‘ 𝑈 ) 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 7 | 6 | simp2d | ⊢ ( 𝑈  ∈  NrmCVec  →  𝑁 : 𝑋 ⟶ ℝ ) |