Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Definition and basic properties
nvgcl
Metamath Proof Explorer
Description: Closure law for the vector addition (group) operation of a normed
complex vector space. (Contributed by NM , 23-Apr-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
nvgcl.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
nvgcl.2
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 )
Assertion
nvgcl
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )
Proof
Step
Hyp
Ref
Expression
1
nvgcl.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
2
nvgcl.2
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 )
3
2
nvgrp
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp )
4
1 2
bafval
⊢ 𝑋 = ran 𝐺
5
4
grpocl
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )
6
3 5
syl3an1
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )