Step |
Hyp |
Ref |
Expression |
1 |
|
nvge0.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvge0.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
3 |
|
2rp |
⊢ 2 ∈ ℝ+ |
4 |
3
|
a1i |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 2 ∈ ℝ+ ) |
5 |
1 2
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
6 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
7 |
6 2
|
nvz0 |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
9 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
10 |
9
|
oveq1i |
⊢ ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) |
11 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
12 |
1 11 6
|
nv0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
13 |
10 12
|
eqtr2id |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0vec ‘ 𝑈 ) = ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) |
14 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
17 |
1 16 11
|
nvdir |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
18 |
15 17
|
mp3anr1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
19 |
14 18
|
mpanr1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
20 |
1 11
|
nvsid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = 𝐴 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
22 |
13 19 21
|
3eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0vec ‘ 𝑈 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
24 |
8 23
|
eqtr3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
25 |
1 11
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
26 |
14 25
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
27 |
1 16 2
|
nvtri |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
28 |
26 27
|
mpd3an3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
29 |
24 28
|
eqbrtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
30 |
1 11 2
|
nvm1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐴 ) ) ) |
32 |
5
|
recnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
33 |
32
|
2timesd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 2 · ( 𝑁 ‘ 𝐴 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐴 ) ) ) |
34 |
31 33
|
eqtr4d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
35 |
29 34
|
breqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
36 |
4 5 35
|
prodge0rd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |