Metamath Proof Explorer


Theorem nvgf

Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvgf.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvgf.2 𝐺 = ( +𝑣𝑈 )
Assertion nvgf ( 𝑈 ∈ NrmCVec → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )

Proof

Step Hyp Ref Expression
1 nvgf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvgf.2 𝐺 = ( +𝑣𝑈 )
3 2 nvgrp ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp )
4 1 2 bafval 𝑋 = ran 𝐺
5 4 grpofo ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) –onto𝑋 )
6 fof ( 𝐺 : ( 𝑋 × 𝑋 ) –onto𝑋𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
7 3 5 6 3syl ( 𝑈 ∈ NrmCVec → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )