Step |
Hyp |
Ref |
Expression |
1 |
|
nvgt0.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvgt0.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
3 |
|
nvgt0.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
1 2 3
|
nvz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
5 |
4
|
necon3bid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 𝑍 ) ) |
6 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
7 |
1 3
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
8 |
|
ne0gt0 |
⊢ ( ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ 𝐴 ) ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
10 |
5 9
|
bitr3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |