Step |
Hyp |
Ref |
Expression |
1 |
|
nvi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvi.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nvi.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
nvi.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
5 |
|
nvi.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 𝑈 ) |
7 |
6 5
|
nvop2 |
⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 ) |
8 |
6 2 3
|
nvvop |
⊢ ( 𝑈 ∈ NrmCVec → ( 1st ‘ 𝑈 ) = 〈 𝐺 , 𝑆 〉 ) |
9 |
8
|
opeq1d |
⊢ ( 𝑈 ∈ NrmCVec → 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
11 |
|
id |
⊢ ( 𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec ) |
12 |
10 11
|
eqeltrrd |
⊢ ( 𝑈 ∈ NrmCVec → 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ) |
13 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
14 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
15 |
13 14
|
isnv |
⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
16 |
12 15
|
sylib |
⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
17 |
2 4
|
0vfval |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 = 𝑍 ↔ 𝑥 = ( GId ‘ 𝐺 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑈 ∈ NrmCVec → ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ) ) |
20 |
19
|
3anbi1d |
⊢ ( 𝑈 ∈ NrmCVec → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑈 ∈ NrmCVec → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
22 |
21
|
3anbi3d |
⊢ ( 𝑈 ∈ NrmCVec → ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
23 |
16 22
|
mpbird |
⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |