Metamath Proof Explorer


Theorem nvi

Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvi.2 𝐺 = ( +𝑣𝑈 )
nvi.4 𝑆 = ( ·𝑠OLD𝑈 )
nvi.5 𝑍 = ( 0vec𝑈 )
nvi.6 𝑁 = ( normCV𝑈 )
Assertion nvi ( 𝑈 ∈ NrmCVec → ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 nvi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvi.2 𝐺 = ( +𝑣𝑈 )
3 nvi.4 𝑆 = ( ·𝑠OLD𝑈 )
4 nvi.5 𝑍 = ( 0vec𝑈 )
5 nvi.6 𝑁 = ( normCV𝑈 )
6 eqid ( 1st𝑈 ) = ( 1st𝑈 )
7 6 5 nvop2 ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ ( 1st𝑈 ) , 𝑁 ⟩ )
8 6 2 3 nvvop ( 𝑈 ∈ NrmCVec → ( 1st𝑈 ) = ⟨ 𝐺 , 𝑆 ⟩ )
9 8 opeq1d ( 𝑈 ∈ NrmCVec → ⟨ ( 1st𝑈 ) , 𝑁 ⟩ = ⟨ ⟨ 𝐺 , 𝑆 ⟩ , 𝑁 ⟩ )
10 7 9 eqtrd ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ ⟨ 𝐺 , 𝑆 ⟩ , 𝑁 ⟩ )
11 id ( 𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec )
12 10 11 eqeltrrd ( 𝑈 ∈ NrmCVec → ⟨ ⟨ 𝐺 , 𝑆 ⟩ , 𝑁 ⟩ ∈ NrmCVec )
13 1 2 bafval 𝑋 = ran 𝐺
14 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
15 13 14 isnv ( ⟨ ⟨ 𝐺 , 𝑆 ⟩ , 𝑁 ⟩ ∈ NrmCVec ↔ ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )
16 12 15 sylib ( 𝑈 ∈ NrmCVec → ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )
17 2 4 0vfval ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) )
18 17 eqeq2d ( 𝑈 ∈ NrmCVec → ( 𝑥 = 𝑍𝑥 = ( GId ‘ 𝐺 ) ) )
19 18 imbi2d ( 𝑈 ∈ NrmCVec → ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ) )
20 19 3anbi1d ( 𝑈 ∈ NrmCVec → ( ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ↔ ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )
21 20 ralbidv ( 𝑈 ∈ NrmCVec → ( ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ↔ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )
22 21 3anbi3d ( 𝑈 ∈ NrmCVec → ( ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) ↔ ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) ) )
23 16 22 mpbird ( 𝑈 ∈ NrmCVec → ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥𝑋 ( ( ( 𝑁𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁𝑥 ) ) ∧ ∀ 𝑦𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁𝑥 ) + ( 𝑁𝑦 ) ) ) ) )