Metamath Proof Explorer


Theorem nvinv

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinv.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvinv.2 𝐺 = ( +𝑣𝑈 )
nvinv.4 𝑆 = ( ·𝑠OLD𝑈 )
nvinv.5 𝑀 = ( inv ‘ 𝐺 )
Assertion nvinv ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀𝐴 ) )

Proof

Step Hyp Ref Expression
1 nvinv.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvinv.2 𝐺 = ( +𝑣𝑈 )
3 nvinv.4 𝑆 = ( ·𝑠OLD𝑈 )
4 nvinv.5 𝑀 = ( inv ‘ 𝐺 )
5 eqid ( 1st𝑈 ) = ( 1st𝑈 )
6 5 nvvc ( 𝑈 ∈ NrmCVec → ( 1st𝑈 ) ∈ CVecOLD )
7 2 vafval 𝐺 = ( 1st ‘ ( 1st𝑈 ) )
8 3 smfval 𝑆 = ( 2nd ‘ ( 1st𝑈 ) )
9 1 2 bafval 𝑋 = ran 𝐺
10 7 8 9 4 vcm ( ( ( 1st𝑈 ) ∈ CVecOLD𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀𝐴 ) )
11 6 10 sylan ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀𝐴 ) )