Metamath Proof Explorer


Theorem nvinvfval

Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinvfval.2 𝐺 = ( +𝑣𝑈 )
nvinvfval.4 𝑆 = ( ·𝑠OLD𝑈 )
nvinvfval.3 𝑁 = ( 𝑆 ( 2nd ↾ ( { - 1 } × V ) ) )
Assertion nvinvfval ( 𝑈 ∈ NrmCVec → 𝑁 = ( inv ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 nvinvfval.2 𝐺 = ( +𝑣𝑈 )
2 nvinvfval.4 𝑆 = ( ·𝑠OLD𝑈 )
3 nvinvfval.3 𝑁 = ( 𝑆 ( 2nd ↾ ( { - 1 } × V ) ) )
4 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
5 4 2 nvsf ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) )
6 neg1cn - 1 ∈ ℂ
7 3 curry1f ( ( 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ - 1 ∈ ℂ ) → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) )
8 5 6 7 sylancl ( 𝑈 ∈ NrmCVec → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) )
9 8 ffnd ( 𝑈 ∈ NrmCVec → 𝑁 Fn ( BaseSet ‘ 𝑈 ) )
10 1 nvgrp ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp )
11 4 1 bafval ( BaseSet ‘ 𝑈 ) = ran 𝐺
12 eqid ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 )
13 11 12 grpoinvf ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) )
14 f1ofn ( ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) )
15 10 13 14 3syl ( 𝑈 ∈ NrmCVec → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) )
16 5 ffnd ( 𝑈 ∈ NrmCVec → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) )
17 16 adantr ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) )
18 3 curry1val ( ( 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ∧ - 1 ∈ ℂ ) → ( 𝑁𝑥 ) = ( - 1 𝑆 𝑥 ) )
19 17 6 18 sylancl ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁𝑥 ) = ( - 1 𝑆 𝑥 ) )
20 4 1 2 12 nvinv ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( - 1 𝑆 𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) )
21 19 20 eqtrd ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) )
22 9 15 21 eqfnfvd ( 𝑈 ∈ NrmCVec → 𝑁 = ( inv ‘ 𝐺 ) )