Step |
Hyp |
Ref |
Expression |
1 |
|
nvinvfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
2 |
|
nvinvfval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
nvinvfval.3 |
⊢ 𝑁 = ( 𝑆 ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) |
4 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
5 |
4 2
|
nvsf |
⊢ ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
3
|
curry1f |
⊢ ( ( 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ - 1 ∈ ℂ ) → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
9 |
8
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
10 |
1
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
11 |
4 1
|
bafval |
⊢ ( BaseSet ‘ 𝑈 ) = ran 𝐺 |
12 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
13 |
11 12
|
grpoinvf |
⊢ ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) ) |
14 |
|
f1ofn |
⊢ ( ( inv ‘ 𝐺 ) : ( BaseSet ‘ 𝑈 ) –1-1-onto→ ( BaseSet ‘ 𝑈 ) → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) ) |
15 |
10 13 14
|
3syl |
⊢ ( 𝑈 ∈ NrmCVec → ( inv ‘ 𝐺 ) Fn ( BaseSet ‘ 𝑈 ) ) |
16 |
5
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
18 |
3
|
curry1val |
⊢ ( ( 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ∧ - 1 ∈ ℂ ) → ( 𝑁 ‘ 𝑥 ) = ( - 1 𝑆 𝑥 ) ) |
19 |
17 6 18
|
sylancl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑥 ) = ( - 1 𝑆 𝑥 ) ) |
20 |
4 1 2 12
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( - 1 𝑆 𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) ) |
21 |
19 20
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑥 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑥 ) ) |
22 |
9 15 21
|
eqfnfvd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 = ( inv ‘ 𝐺 ) ) |