| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvs.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvs.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 3 |  | nvs.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 5 | 1 2 3 | nvs | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  - 1  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) )  =  ( ( abs ‘ - 1 )  ·  ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 6 | 4 5 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) )  =  ( ( abs ‘ - 1 )  ·  ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 | 7 | absnegi | ⊢ ( abs ‘ - 1 )  =  ( abs ‘ 1 ) | 
						
							| 9 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 10 | 8 9 | eqtri | ⊢ ( abs ‘ - 1 )  =  1 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( abs ‘ - 1 )  ·  ( 𝑁 ‘ 𝐴 ) )  =  ( 1  ·  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 12 | 1 3 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 14 | 13 | mullidd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 1  ·  ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 15 | 11 14 | eqtrid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( ( abs ‘ - 1 )  ·  ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 16 | 6 15 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) |