Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Definition and basic properties
nvmcl
Metamath Proof Explorer
Description: Closure law for the vector subtraction operation of a normed complex
vector space. (Contributed by NM , 11-Sep-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
nvmf.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
nvmf.3
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 )
Assertion
nvmcl
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 )
Proof
Step
Hyp
Ref
Expression
1
nvmf.1
⊢ 𝑋 = ( BaseSet ‘ 𝑈 )
2
nvmf.3
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 )
3
1 2
nvmf
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
4
fovrn
⊢ ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 )
5
3 4
syl3an1
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 )