Step |
Hyp |
Ref |
Expression |
1 |
|
nvmeq0.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmeq0.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
nvmeq0.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
4 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |
5 |
4
|
3expb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |
6 |
1 3
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑍 ∈ 𝑋 ) |
8 |
|
simprr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
9 |
5 7 8
|
3jca |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
10 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
11 |
1 10
|
nvrcan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
12 |
9 11
|
syldan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
13 |
12
|
3impb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
14 |
1 10 2
|
nvnpcan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐴 ) |
15 |
1 10 3
|
nv0lid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐵 ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐵 ) |
17 |
14 16
|
eqeq12d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
18 |
13 17
|
bitr3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) = 𝑍 ↔ 𝐴 = 𝐵 ) ) |