Metamath Proof Explorer


Theorem nvmeq0

Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmeq0.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvmeq0.3 𝑀 = ( −𝑣𝑈 )
nvmeq0.5 𝑍 = ( 0vec𝑈 )
Assertion nvmeq0 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) = 𝑍𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nvmeq0.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvmeq0.3 𝑀 = ( −𝑣𝑈 )
3 nvmeq0.5 𝑍 = ( 0vec𝑈 )
4 1 2 nvmcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 )
5 4 3expb ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 )
6 1 3 nvzcl ( 𝑈 ∈ NrmCVec → 𝑍𝑋 )
7 6 adantr ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝑍𝑋 )
8 simprr ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐵𝑋 )
9 5 7 8 3jca ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋𝑍𝑋𝐵𝑋 ) )
10 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
11 1 10 nvrcan ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋𝑍𝑋𝐵𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) )
12 9 11 syldan ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) )
13 12 3impb ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) )
14 1 10 2 nvnpcan ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) ( +𝑣𝑈 ) 𝐵 ) = 𝐴 )
15 1 10 3 nv0lid ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) = 𝐵 )
16 15 3adant2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) = 𝐵 )
17 14 16 eqeq12d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣𝑈 ) 𝐵 ) ↔ 𝐴 = 𝐵 ) )
18 13 17 bitr3d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) = 𝑍𝐴 = 𝐵 ) )