Step |
Hyp |
Ref |
Expression |
1 |
|
nvmf.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmf.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
simpl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) |
4 |
|
simprl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
7 |
1 6
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
8 |
5 7
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
9 |
8
|
adantrl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) |
10 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
11 |
1 10
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ 𝑋 ) → ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
12 |
3 4 9 11
|
syl3anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
13 |
12
|
ralrimivva |
⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) |
15 |
14
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
16 |
13 15
|
sylib |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
17 |
1 10 6 2
|
nvmfval |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) |
18 |
17
|
feq1d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
19 |
16 18
|
mpbird |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |