Step |
Hyp |
Ref |
Expression |
1 |
|
nvmval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nvmval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
nvmval.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
5 |
2
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
6 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
7 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
8 |
2 4
|
vsfval |
⊢ 𝑀 = ( /𝑔 ‘ 𝐺 ) |
9 |
6 7 8
|
grpodivfval |
⊢ ( 𝐺 ∈ GrpOp → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
10 |
5 9
|
syl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
11 |
1 2 3 7
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( - 1 𝑆 𝑦 ) = ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
14 |
13
|
mpoeq3dva |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
15 |
10 14
|
eqtr4d |
⊢ ( 𝑈 ∈ NrmCVec → 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |