Description: A vector minus itself is the zero vector. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmeq0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmeq0.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| nvmeq0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | nvmid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐴 ) = 𝑍 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nvmeq0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmeq0.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | nvmeq0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | eqid | ⊢ 𝐴 = 𝐴 | |
| 5 | 1 2 3 | nvmeq0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐴 ) = 𝑍 ↔ 𝐴 = 𝐴 ) ) | 
| 6 | 5 | 3anidm23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐴 ) = 𝑍 ↔ 𝐴 = 𝐴 ) ) | 
| 7 | 4 6 | mpbiri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐴 ) = 𝑍 ) |