Step |
Hyp |
Ref |
Expression |
1 |
|
nvmtri.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmtri.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
nvmtri.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
6 |
1 5
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
7 |
4 6
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
9 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
10 |
1 9 3
|
nvtri |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
11 |
8 10
|
syld3an3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
12 |
1 9 5 2
|
nvmval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
14 |
1 5 3
|
nvs |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
15 |
4 14
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
16
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
18 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
19 |
17 18
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
20 |
19
|
oveq1i |
⊢ ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 1 · ( 𝑁 ‘ 𝐵 ) ) |
21 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℂ ) |
23 |
22
|
mulid2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
24 |
20 23
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
25 |
15 24
|
eqtr2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ) |
28 |
11 13 27
|
3brtr4d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |