Metamath Proof Explorer


Theorem nvmtri

Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmtri.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvmtri.3 𝑀 = ( −𝑣𝑈 )
nvmtri.6 𝑁 = ( normCV𝑈 )
Assertion nvmtri ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 nvmtri.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvmtri.3 𝑀 = ( −𝑣𝑈 )
3 nvmtri.6 𝑁 = ( normCV𝑈 )
4 neg1cn - 1 ∈ ℂ
5 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
6 1 5 nvscl ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵𝑋 ) → ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ∈ 𝑋 )
7 4 6 mp3an2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ∈ 𝑋 )
8 7 3adant2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ∈ 𝑋 )
9 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
10 1 9 3 nvtri ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣𝑈 ) ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) )
11 8 10 syld3an3 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣𝑈 ) ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) )
12 1 9 5 2 nvmval ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣𝑈 ) ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) )
13 12 fveq2d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣𝑈 ) ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) )
14 1 5 3 nvs ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁𝐵 ) ) )
15 4 14 mp3an2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁𝐵 ) ) )
16 ax-1cn 1 ∈ ℂ
17 16 absnegi ( abs ‘ - 1 ) = ( abs ‘ 1 )
18 abs1 ( abs ‘ 1 ) = 1
19 17 18 eqtri ( abs ‘ - 1 ) = 1
20 19 oveq1i ( ( abs ‘ - 1 ) · ( 𝑁𝐵 ) ) = ( 1 · ( 𝑁𝐵 ) )
21 1 3 nvcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ ℝ )
22 21 recnd ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ ℂ )
23 22 mulid2d ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 1 · ( 𝑁𝐵 ) ) = ( 𝑁𝐵 ) )
24 20 23 syl5eq ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( ( abs ‘ - 1 ) · ( 𝑁𝐵 ) ) = ( 𝑁𝐵 ) )
25 15 24 eqtr2d ( ( 𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ) → ( 𝑁𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) )
26 25 3adant2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁𝐵 ) = ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) )
27 26 oveq2d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) = ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD𝑈 ) 𝐵 ) ) ) )
28 11 13 27 3brtr4d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) )