Step |
Hyp |
Ref |
Expression |
1 |
|
nvmul0or.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmul0or.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
nvmul0or.6 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
4 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
5 |
|
oveq2 |
⊢ ( ( 𝐴 𝑆 𝐵 ) = 𝑍 → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = ( ( 1 / 𝐴 ) 𝑆 𝑍 ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = ( ( 1 / 𝐴 ) 𝑆 𝑍 ) ) |
7 |
|
recid2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) ) |
9 |
8
|
3ad2antl2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝑈 ∈ NrmCVec ) |
11 |
|
reccl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
12 |
11
|
3ad2antl2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ 𝑋 ) |
15 |
1 2
|
nvsass |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) |
16 |
10 12 13 14 15
|
syl13anc |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) |
17 |
1 2
|
nvsid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
18 |
17
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
20 |
9 16 19
|
3eqtr3d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = 𝐵 ) |
21 |
20
|
adantlr |
⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = 𝐵 ) |
22 |
2 3
|
nvsz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / 𝐴 ) ∈ ℂ ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
23 |
11 22
|
sylan2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
24 |
23
|
anassrs |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
25 |
24
|
3adantl3 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
26 |
25
|
adantlr |
⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
27 |
6 21 26
|
3eqtr3d |
⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → 𝐵 = 𝑍 ) |
28 |
27
|
ex |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( 𝐴 ≠ 0 → 𝐵 = 𝑍 ) ) |
29 |
4 28
|
syl5bir |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( ¬ 𝐴 = 0 → 𝐵 = 𝑍 ) ) |
30 |
29
|
orrd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) |
31 |
30
|
ex |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 → ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) ) |
32 |
1 2 3
|
nv0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 0 𝑆 𝐵 ) = 𝑍 ) |
33 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = ( 0 𝑆 𝐵 ) ) |
34 |
33
|
eqeq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 0 𝑆 𝐵 ) = 𝑍 ) ) |
35 |
32 34
|
syl5ibrcom |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
36 |
35
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
37 |
2 3
|
nvsz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 𝑍 ) = 𝑍 ) |
38 |
|
oveq2 |
⊢ ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 𝑆 𝑍 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝐵 = 𝑍 → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 𝐴 𝑆 𝑍 ) = 𝑍 ) ) |
40 |
37 39
|
syl5ibrcom |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) → ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
42 |
36 41
|
jaod |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
43 |
31 42
|
impbid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) ) |