| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvmul0or.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvmul0or.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 3 |  | nvmul0or.6 | ⊢ 𝑍  =  ( 0vec ‘ 𝑈 ) | 
						
							| 4 |  | df-ne | ⊢ ( 𝐴  ≠  0  ↔  ¬  𝐴  =  0 ) | 
						
							| 5 |  | oveq2 | ⊢ ( ( 𝐴 𝑆 𝐵 )  =  𝑍  →  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) )  =  ( ( 1  /  𝐴 ) 𝑆 𝑍 ) ) | 
						
							| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) )  =  ( ( 1  /  𝐴 ) 𝑆 𝑍 ) ) | 
						
							| 7 |  | recid2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( ( 1  /  𝐴 )  ·  𝐴 ) 𝑆 𝐵 )  =  ( 1 𝑆 𝐵 ) ) | 
						
							| 9 | 8 | 3ad2antl2 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( ( ( 1  /  𝐴 )  ·  𝐴 ) 𝑆 𝐵 )  =  ( 1 𝑆 𝐵 ) ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 11 |  | reccl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 12 | 11 | 3ad2antl2 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 13 |  | simpl2 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  𝐵  ∈  𝑋 ) | 
						
							| 15 | 1 2 | nvsass | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( ( 1  /  𝐴 )  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 ) )  →  ( ( ( 1  /  𝐴 )  ·  𝐴 ) 𝑆 𝐵 )  =  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) | 
						
							| 16 | 10 12 13 14 15 | syl13anc | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( ( ( 1  /  𝐴 )  ·  𝐴 ) 𝑆 𝐵 )  =  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) | 
						
							| 17 | 1 2 | nvsid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( 1 𝑆 𝐵 )  =  𝐵 ) | 
						
							| 18 | 17 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( 1 𝑆 𝐵 )  =  𝐵 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( 1 𝑆 𝐵 )  =  𝐵 ) | 
						
							| 20 | 9 16 19 | 3eqtr3d | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) )  =  𝐵 ) | 
						
							| 21 | 20 | adantlr | ⊢ ( ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) )  =  𝐵 ) | 
						
							| 22 | 2 3 | nvsz | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 1  /  𝐴 )  ∈  ℂ )  →  ( ( 1  /  𝐴 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 23 | 11 22 | sylan2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) )  →  ( ( 1  /  𝐴 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 24 | 23 | anassrs | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 25 | 24 | 3adantl3 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  ∧  𝐴  ≠  0 )  →  ( ( 1  /  𝐴 ) 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 27 | 6 21 26 | 3eqtr3d | ⊢ ( ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  ∧  𝐴  ≠  0 )  →  𝐵  =  𝑍 ) | 
						
							| 28 | 27 | ex | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  →  ( 𝐴  ≠  0  →  𝐵  =  𝑍 ) ) | 
						
							| 29 | 4 28 | biimtrrid | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  →  ( ¬  𝐴  =  0  →  𝐵  =  𝑍 ) ) | 
						
							| 30 | 29 | orrd | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑆 𝐵 )  =  𝑍 )  →  ( 𝐴  =  0  ∨  𝐵  =  𝑍 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑆 𝐵 )  =  𝑍  →  ( 𝐴  =  0  ∨  𝐵  =  𝑍 ) ) ) | 
						
							| 32 | 1 2 3 | nv0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( 0 𝑆 𝐵 )  =  𝑍 ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴 𝑆 𝐵 )  =  ( 0 𝑆 𝐵 ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴 𝑆 𝐵 )  =  𝑍  ↔  ( 0 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 35 | 32 34 | syl5ibrcom | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  =  0  →  ( 𝐴 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 36 | 35 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  =  0  →  ( 𝐴 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 37 | 2 3 | nvsz | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 𝑍 )  =  𝑍 ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝐵  =  𝑍  →  ( 𝐴 𝑆 𝐵 )  =  ( 𝐴 𝑆 𝑍 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝐵  =  𝑍  →  ( ( 𝐴 𝑆 𝐵 )  =  𝑍  ↔  ( 𝐴 𝑆 𝑍 )  =  𝑍 ) ) | 
						
							| 40 | 37 39 | syl5ibrcom | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  ( 𝐵  =  𝑍  →  ( 𝐴 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵  =  𝑍  →  ( 𝐴 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 42 | 36 41 | jaod | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  =  0  ∨  𝐵  =  𝑍 )  →  ( 𝐴 𝑆 𝐵 )  =  𝑍 ) ) | 
						
							| 43 | 31 42 | impbid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑆 𝐵 )  =  𝑍  ↔  ( 𝐴  =  0  ∨  𝐵  =  𝑍 ) ) ) |