Step |
Hyp |
Ref |
Expression |
1 |
|
nvmval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvmval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nvmval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
nvmval.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
5 |
2
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
6 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
7 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ 𝐺 ) |
9 |
6 7 8
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( /𝑔 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
10 |
5 9
|
syl3an1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( /𝑔 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
11 |
1 2 4 8
|
nvm |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( /𝑔 ‘ 𝐺 ) 𝐵 ) ) |
12 |
1 2 3 7
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) = ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) |
13 |
12
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) = ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
15 |
10 11 14
|
3eqtr4d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |