| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvmval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvmval.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | nvmval.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 4 |  | nvmval.3 | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 5 | 1 2 3 4 | nvmval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑀 𝐵 )  =  ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) | 
						
							| 6 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 7 | 1 3 | nvscl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  - 1  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( - 1 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( - 1 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - 1 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 10 | 1 2 | nvcom | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  ( - 1 𝑆 𝐵 )  ∈  𝑋 )  →  ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) )  =  ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) | 
						
							| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) )  =  ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) | 
						
							| 12 | 5 11 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑀 𝐵 )  =  ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |