| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvnd.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
nvnd.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
| 3 |
|
nvnd.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 4 |
|
nvnd.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 5 |
1 2
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 7 |
|
eqid |
⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) |
| 8 |
1 7 3 4
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑍 ) = ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) ) |
| 9 |
6 8
|
mpd3an3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑍 ) = ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) ) |
| 10 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 12 |
1 10 11 7
|
nvmval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) |
| 13 |
6 12
|
mpd3an3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) |
| 14 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 15 |
11 2
|
nvsz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 16 |
14 15
|
mpan2 |
⊢ ( 𝑈 ∈ NrmCVec → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) |
| 19 |
1 10 2
|
nv0rid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) = 𝐴 ) |
| 20 |
13 18 19
|
3eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = 𝐴 ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 22 |
9 21
|
eqtr2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐷 𝑍 ) ) |