Step |
Hyp |
Ref |
Expression |
1 |
|
nvnegneg.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvnegneg.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
4 |
1 2
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
5 |
3 4
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
6 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) = ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) |
8 |
1 6 2 7
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) ) |
9 |
5 8
|
syldan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) ) |
10 |
1 6 2 7
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) ) |
12 |
6
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → ( +𝑣 ‘ 𝑈 ) ∈ GrpOp ) |
13 |
1 6
|
bafval |
⊢ 𝑋 = ran ( +𝑣 ‘ 𝑈 ) |
14 |
13 7
|
grpo2inv |
⊢ ( ( ( +𝑣 ‘ 𝑈 ) ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 ) |
15 |
12 14
|
sylan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 ) |
16 |
9 11 15
|
3eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 ) |