Metamath Proof Explorer


Theorem nvnegneg

Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvnegneg.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈 )
Assertion nvnegneg ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 nvnegneg.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈 )
3 neg1cn - 1 ∈ ℂ
4 1 2 nvscl ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 )
5 3 4 mp3an2 ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 )
6 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
7 eqid ( inv ‘ ( +𝑣𝑈 ) ) = ( inv ‘ ( +𝑣𝑈 ) )
8 1 6 2 7 nvinv ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) )
9 5 8 syldan ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) )
10 1 6 2 7 nvinv ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ 𝐴 ) )
11 10 fveq2d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ 𝐴 ) ) )
12 6 nvgrp ( 𝑈 ∈ NrmCVec → ( +𝑣𝑈 ) ∈ GrpOp )
13 1 6 bafval 𝑋 = ran ( +𝑣𝑈 )
14 13 7 grpo2inv ( ( ( +𝑣𝑈 ) ∈ GrpOp ∧ 𝐴𝑋 ) → ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 )
15 12 14 sylan ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 )
16 9 11 15 3eqtrd ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 )