Metamath Proof Explorer


Theorem nvnnncan1

Description: Cancellation law for vector subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvmf.3 𝑀 = ( −𝑣𝑈 )
Assertion nvnnncan1 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑀 ( 𝐴 𝑀 𝐶 ) ) = ( 𝐶 𝑀 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nvmf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvmf.3 𝑀 = ( −𝑣𝑈 )
3 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
4 3 nvablo ( 𝑈 ∈ NrmCVec → ( +𝑣𝑈 ) ∈ AbelOp )
5 1 3 bafval 𝑋 = ran ( +𝑣𝑈 )
6 3 2 vsfval 𝑀 = ( /𝑔 ‘ ( +𝑣𝑈 ) )
7 5 6 ablonnncan1 ( ( ( +𝑣𝑈 ) ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑀 ( 𝐴 𝑀 𝐶 ) ) = ( 𝐶 𝑀 𝐵 ) )
8 4 7 sylan ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑀 ( 𝐴 𝑀 𝐶 ) ) = ( 𝐶 𝑀 𝐵 ) )