| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvpncan2.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvpncan2.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | nvpncan2.3 | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | simprl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 5 |  | simprr | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 6 | 4 5 5 | 3jca | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 7 | 1 2 3 | nvaddsub | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 )  =  ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) | 
						
							| 8 | 6 7 | syldan | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 )  =  ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) | 
						
							| 9 | 8 | 3impb | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 )  =  ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 ) ) | 
						
							| 10 | 1 2 3 | nvpncan | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐵 )  =  𝐴 ) | 
						
							| 11 | 9 10 | eqtr3d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑀 𝐵 ) 𝐺 𝐵 )  =  𝐴 ) |