Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nvo00.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| Assertion | nvo00 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvo00.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ffn | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → 𝑇 Fn 𝑋 ) | |
| 3 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 4 | 1 3 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ 𝑋 ) |
| 5 | 4 | ne0d | ⊢ ( 𝑈 ∈ NrmCVec → 𝑋 ≠ ∅ ) |
| 6 | fconst5 | ⊢ ( ( 𝑇 Fn 𝑋 ∧ 𝑋 ≠ ∅ ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) ) | |
| 7 | 2 5 6 | syl2anr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) ) |