Metamath Proof Explorer


Theorem nvo00

Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis nvo00.1 𝑋 = ( BaseSet ‘ 𝑈 )
Assertion nvo00 ( ( 𝑈 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) )

Proof

Step Hyp Ref Expression
1 nvo00.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 ffn ( 𝑇 : 𝑋𝑌𝑇 Fn 𝑋 )
3 eqid ( 0vec𝑈 ) = ( 0vec𝑈 )
4 1 3 nvzcl ( 𝑈 ∈ NrmCVec → ( 0vec𝑈 ) ∈ 𝑋 )
5 4 ne0d ( 𝑈 ∈ NrmCVec → 𝑋 ≠ ∅ )
6 fconst5 ( ( 𝑇 Fn 𝑋𝑋 ≠ ∅ ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) )
7 2 5 6 syl2anr ( ( 𝑈 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( 𝑇 = ( 𝑋 × { 𝑍 } ) ↔ ran 𝑇 = { 𝑍 } ) )