| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvop.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 2 |  | nvop.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 3 |  | nvop.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nvrel | ⊢ Rel  NrmCVec | 
						
							| 5 |  | 1st2nd | ⊢ ( ( Rel  NrmCVec  ∧  𝑈  ∈  NrmCVec )  →  𝑈  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝑈  ∈  NrmCVec  →  𝑈  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 ) | 
						
							| 7 | 3 | nmcvfval | ⊢ 𝑁  =  ( 2nd  ‘ 𝑈 ) | 
						
							| 8 | 7 | opeq2i | ⊢ 〈 ( 1st  ‘ 𝑈 ) ,  𝑁 〉  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 | 
						
							| 9 |  | eqid | ⊢ ( 1st  ‘ 𝑈 )  =  ( 1st  ‘ 𝑈 ) | 
						
							| 10 | 9 1 2 | nvvop | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 1st  ‘ 𝑈 )  =  〈 𝐺 ,  𝑆 〉 ) | 
						
							| 11 | 10 | opeq1d | ⊢ ( 𝑈  ∈  NrmCVec  →  〈 ( 1st  ‘ 𝑈 ) ,  𝑁 〉  =  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉 ) | 
						
							| 12 | 8 11 | eqtr3id | ⊢ ( 𝑈  ∈  NrmCVec  →  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉  =  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉 ) | 
						
							| 13 | 6 12 | eqtrd | ⊢ ( 𝑈  ∈  NrmCVec  →  𝑈  =  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉 ) |