Metamath Proof Explorer


Theorem nvop2

Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvop2.1 𝑊 = ( 1st𝑈 )
nvop2.6 𝑁 = ( normCV𝑈 )
Assertion nvop2 ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ 𝑊 , 𝑁 ⟩ )

Proof

Step Hyp Ref Expression
1 nvop2.1 𝑊 = ( 1st𝑈 )
2 nvop2.6 𝑁 = ( normCV𝑈 )
3 nvrel Rel NrmCVec
4 1st2nd ( ( Rel NrmCVec ∧ 𝑈 ∈ NrmCVec ) → 𝑈 = ⟨ ( 1st𝑈 ) , ( 2nd𝑈 ) ⟩ )
5 3 4 mpan ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ ( 1st𝑈 ) , ( 2nd𝑈 ) ⟩ )
6 2 nmcvfval 𝑁 = ( 2nd𝑈 )
7 1 6 opeq12i 𝑊 , 𝑁 ⟩ = ⟨ ( 1st𝑈 ) , ( 2nd𝑈 ) ⟩
8 5 7 eqtr4di ( 𝑈 ∈ NrmCVec → 𝑈 = ⟨ 𝑊 , 𝑁 ⟩ )