| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvdif.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvdif.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | nvdif.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 4 |  | nvdif.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 6 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 7 | 1 3 | nvscl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  i  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( i 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( i 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( i 𝑆 𝐵 )  ∈  𝑋 ) | 
						
							| 10 | 1 2 | nvgcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  ( i 𝑆 𝐵 )  ∈  𝑋 )  →  ( 𝐴 𝐺 ( i 𝑆 𝐵 ) )  ∈  𝑋 ) | 
						
							| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( i 𝑆 𝐵 ) )  ∈  𝑋 ) | 
						
							| 12 | 1 4 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝐺 ( i 𝑆 𝐵 ) )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 13 | 5 11 12 | syl2anc | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  ∈  ℂ ) | 
						
							| 15 | 14 | mullidd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 1  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) | 
						
							| 16 | 6 | absnegi | ⊢ ( abs ‘ - i )  =  ( abs ‘ i ) | 
						
							| 17 |  | absi | ⊢ ( abs ‘ i )  =  1 | 
						
							| 18 | 16 17 | eqtri | ⊢ ( abs ‘ - i )  =  1 | 
						
							| 19 | 18 | oveq1i | ⊢ ( ( abs ‘ - i )  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( 1  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) | 
						
							| 20 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 21 | 1 3 4 | nvs | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  - i  ∈  ℂ  ∧  ( 𝐴 𝐺 ( i 𝑆 𝐵 ) )  ∈  𝑋 )  →  ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( ( abs ‘ - i )  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) | 
						
							| 22 | 20 21 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝐺 ( i 𝑆 𝐵 ) )  ∈  𝑋 )  →  ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( ( abs ‘ - i )  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) | 
						
							| 23 | 5 11 22 | syl2anc | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( ( abs ‘ - i )  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) | 
						
							| 24 |  | simp2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 25 | 1 2 3 | nvdi | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( - i  ∈  ℂ  ∧  𝐴  ∈  𝑋  ∧  ( i 𝑆 𝐵 )  ∈  𝑋 ) )  →  ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  =  ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) | 
						
							| 26 | 20 25 | mp3anr1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  ( i 𝑆 𝐵 )  ∈  𝑋 ) )  →  ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  =  ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) | 
						
							| 27 | 5 24 9 26 | syl12anc | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  =  ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) | 
						
							| 28 | 6 6 | mulneg1i | ⊢ ( - i  ·  i )  =  - ( i  ·  i ) | 
						
							| 29 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 30 | 29 | negeqi | ⊢ - ( i  ·  i )  =  - - 1 | 
						
							| 31 |  | negneg1e1 | ⊢ - - 1  =  1 | 
						
							| 32 | 30 31 | eqtri | ⊢ - ( i  ·  i )  =  1 | 
						
							| 33 | 28 32 | eqtri | ⊢ ( - i  ·  i )  =  1 | 
						
							| 34 | 33 | oveq1i | ⊢ ( ( - i  ·  i ) 𝑆 𝐵 )  =  ( 1 𝑆 𝐵 ) | 
						
							| 35 | 1 3 | nvsass | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( - i  ∈  ℂ  ∧  i  ∈  ℂ  ∧  𝐵  ∈  𝑋 ) )  →  ( ( - i  ·  i ) 𝑆 𝐵 )  =  ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) | 
						
							| 36 | 20 35 | mp3anr1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( i  ∈  ℂ  ∧  𝐵  ∈  𝑋 ) )  →  ( ( - i  ·  i ) 𝑆 𝐵 )  =  ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) | 
						
							| 37 | 6 36 | mpanr1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( ( - i  ·  i ) 𝑆 𝐵 )  =  ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) | 
						
							| 38 | 1 3 | nvsid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( 1 𝑆 𝐵 )  =  𝐵 ) | 
						
							| 39 | 34 37 38 | 3eqtr3a | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( - i 𝑆 ( i 𝑆 𝐵 ) )  =  𝐵 ) | 
						
							| 40 | 39 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - i 𝑆 ( i 𝑆 𝐵 ) )  =  𝐵 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) )  =  ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 ) ) | 
						
							| 42 | 1 3 | nvscl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  - i  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( - i 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 43 | 20 42 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( - i 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 44 | 43 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - i 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 45 | 1 2 | nvcom | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( - i 𝑆 𝐴 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 )  =  ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) | 
						
							| 46 | 44 45 | syld3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 )  =  ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) | 
						
							| 47 | 27 41 46 | 3eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  =  ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) | 
						
							| 49 | 23 48 | eqtr3d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( abs ‘ - i )  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) | 
						
							| 50 | 19 49 | eqtr3id | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 1  ·  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) )  =  ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) | 
						
							| 51 | 15 50 | eqtr3d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) )  =  ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |