| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvpncan2.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvpncan2.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | nvpncan2.3 | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝑈  ∈  NrmCVec ) | 
						
							| 5 | 1 2 | nvgcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐵 )  ∈  𝑋 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 7 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑈 )  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 8 | 1 2 7 3 | nvmval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴 𝐺 𝐵 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) ) | 
						
							| 9 | 4 5 6 8 | syl3anc | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 11 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 12 | 1 7 | nvscl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  - 1  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 )  ∈  𝑋 ) | 
						
							| 13 | 11 12 | mp3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 )  ∈  𝑋 ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 )  ∈  𝑋 ) | 
						
							| 15 | 1 2 | nvadd32 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) )  =  ( ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) | 
						
							| 16 | 4 6 10 14 15 | syl13anc | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) )  =  ( ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0vec ‘ 𝑈 )  =  ( 0vec ‘ 𝑈 ) | 
						
							| 18 | 1 2 7 17 | nvrinv | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) )  =  ( 0vec ‘ 𝑈 ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) )  =  ( 0vec ‘ 𝑈 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 )  =  ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 ) ) | 
						
							| 21 | 1 2 17 | nv0lid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐵  ∈  𝑋 )  →  ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 22 | 21 | 3adant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 0vec ‘ 𝑈 ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 23 | 20 22 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 24 | 16 23 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 (  ·𝑠OLD  ‘ 𝑈 ) 𝐴 ) )  =  𝐵 ) | 
						
							| 25 | 9 24 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝑀 𝐴 )  =  𝐵 ) |