Step |
Hyp |
Ref |
Expression |
1 |
|
nvrinv.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvrinv.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
nvrinv.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
nvrinv.6 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
5 |
2
|
nvgrp |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp ) |
6 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
7 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
9 |
6 7 8
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
10 |
5 9
|
sylan |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
11 |
1 2 3 8
|
nvinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
13 |
2 4
|
0vfval |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 = ( GId ‘ 𝐺 ) ) |
15 |
10 12 14
|
3eqtr4d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = 𝑍 ) |