Step |
Hyp |
Ref |
Expression |
1 |
|
nvs.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvs.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
nvs.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
6 |
1 4 2 5 3
|
nvi |
⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
7 |
6
|
simp3d |
⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
8 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
10 |
7 9
|
syl |
⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 𝑆 𝑥 ) = ( 𝑦 𝑆 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐵 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ↔ ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
16 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝐴 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑁 ‘ ( 𝑦 𝑆 𝐵 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝐵 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
20 |
15 19
|
rspc2v |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
21 |
10 20
|
syl5 |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
23 |
22
|
3com13 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |