| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvs.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nvs.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 3 |  | nvs.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 1 2 3 | nvs | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 7 | 5 6 | syl3an2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 8 |  | absid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑋 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑋 )  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 𝑆 𝐵 ) )  =  ( 𝐴  ·  ( 𝑁 ‘ 𝐵 ) ) ) |