| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvsz.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 2 |  | nvsz.6 | ⊢ 𝑍  =  ( 0vec ‘ 𝑈 ) | 
						
							| 3 |  | eqid | ⊢ ( 1st  ‘ 𝑈 )  =  ( 1st  ‘ 𝑈 ) | 
						
							| 4 | 3 | nvvc | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 1st  ‘ 𝑈 )  ∈  CVecOLD ) | 
						
							| 5 |  | eqid | ⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 6 | 5 | vafval | ⊢ (  +𝑣  ‘ 𝑈 )  =  ( 1st  ‘ ( 1st  ‘ 𝑈 ) ) | 
						
							| 7 | 1 | smfval | ⊢ 𝑆  =  ( 2nd  ‘ ( 1st  ‘ 𝑈 ) ) | 
						
							| 8 |  | eqid | ⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 9 | 8 5 | bafval | ⊢ ( BaseSet ‘ 𝑈 )  =  ran  (  +𝑣  ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( GId ‘ (  +𝑣  ‘ 𝑈 ) )  =  ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 11 | 6 7 9 10 | vcz | ⊢ ( ( ( 1st  ‘ 𝑈 )  ∈  CVecOLD  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) )  =  ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 12 | 4 11 | sylan | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) )  =  ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 13 | 5 2 | 0vfval | ⊢ ( 𝑈  ∈  NrmCVec  →  𝑍  =  ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  𝑍  =  ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 𝑍 )  =  ( 𝐴 𝑆 ( GId ‘ (  +𝑣  ‘ 𝑈 ) ) ) ) | 
						
							| 16 | 12 15 14 | 3eqtr4d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  ℂ )  →  ( 𝐴 𝑆 𝑍 )  =  𝑍 ) |