Step |
Hyp |
Ref |
Expression |
1 |
|
nvvc.1 |
⊢ 𝑊 = ( 1st ‘ 𝑈 ) |
2 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
3 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
1 2 3
|
nvvop |
⊢ ( 𝑈 ∈ NrmCVec → 𝑊 = 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ) |
5 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
8 |
5 2 3 6 7
|
nvi |
⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ∧ ( normCV ‘ 𝑈 ) : ( BaseSet ‘ 𝑈 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( ( normCV ‘ 𝑈 ) ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) + ( ( normCV ‘ 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
9 |
8
|
simp1d |
⊢ ( 𝑈 ∈ NrmCVec → 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ) |
10 |
4 9
|
eqeltrd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD ) |