Metamath Proof Explorer


Theorem nvvcop

Description: A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)

Ref Expression
Assertion nvvcop ( ⟨ 𝑊 , 𝑁 ⟩ ∈ NrmCVec → 𝑊 ∈ CVecOLD )

Proof

Step Hyp Ref Expression
1 nvss NrmCVec ⊆ ( CVecOLD × V )
2 1 sseli ( ⟨ 𝑊 , 𝑁 ⟩ ∈ NrmCVec → ⟨ 𝑊 , 𝑁 ⟩ ∈ ( CVecOLD × V ) )
3 opelxp1 ( ⟨ 𝑊 , 𝑁 ⟩ ∈ ( CVecOLD × V ) → 𝑊 ∈ CVecOLD )
4 2 3 syl ( ⟨ 𝑊 , 𝑁 ⟩ ∈ NrmCVec → 𝑊 ∈ CVecOLD )