| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvz0.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
| 2 |
|
nvz0.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 3 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 4 |
3 1
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
0le0 |
⊢ 0 ≤ 0 |
| 7 |
5 6
|
pm3.2i |
⊢ ( 0 ∈ ℝ ∧ 0 ≤ 0 ) |
| 8 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 9 |
3 8 2
|
nvsge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 0 ∈ ℝ ∧ 0 ≤ 0 ) ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 10 |
7 9
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 11 |
4 10
|
mpdan |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 12 |
3 8 1
|
nv0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 13 |
4 12
|
mpdan |
⊢ ( 𝑈 ∈ NrmCVec → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝑁 ‘ 𝑍 ) ) |
| 15 |
3 2
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑍 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑍 ) ∈ ℂ ) |
| 17 |
4 16
|
mpdan |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) ∈ ℂ ) |
| 18 |
17
|
mul02d |
⊢ ( 𝑈 ∈ NrmCVec → ( 0 · ( 𝑁 ‘ 𝑍 ) ) = 0 ) |
| 19 |
11 14 18
|
3eqtr3d |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) = 0 ) |