Metamath Proof Explorer


Theorem nvzcl

Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvzcl.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvzcl.6 𝑍 = ( 0vec𝑈 )
Assertion nvzcl ( 𝑈 ∈ NrmCVec → 𝑍𝑋 )

Proof

Step Hyp Ref Expression
1 nvzcl.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvzcl.6 𝑍 = ( 0vec𝑈 )
3 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
4 3 2 0vfval ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ ( +𝑣𝑈 ) ) )
5 3 nvgrp ( 𝑈 ∈ NrmCVec → ( +𝑣𝑈 ) ∈ GrpOp )
6 1 3 bafval 𝑋 = ran ( +𝑣𝑈 )
7 eqid ( GId ‘ ( +𝑣𝑈 ) ) = ( GId ‘ ( +𝑣𝑈 ) )
8 6 7 grpoidcl ( ( +𝑣𝑈 ) ∈ GrpOp → ( GId ‘ ( +𝑣𝑈 ) ) ∈ 𝑋 )
9 5 8 syl ( 𝑈 ∈ NrmCVec → ( GId ‘ ( +𝑣𝑈 ) ) ∈ 𝑋 )
10 4 9 eqeltrd ( 𝑈 ∈ NrmCVec → 𝑍𝑋 )