| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzerooringczr.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | nzerooringczr.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 3 |  | nzerooringczr.z | ⊢ ( 𝜑  →  𝑍  ∈  ( Ring  ∖  NzRing ) ) | 
						
							| 4 |  | nzerooringczr.e | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 5 |  | nzerooringczr.i | ⊢ ( 𝜑  →  ℤring  ∈  𝑈 ) | 
						
							| 6 |  | ax-1 | ⊢ ( ( ZeroO ‘ 𝐶 )  =  ∅  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 7 |  | neq0 | ⊢ ( ¬  ( ZeroO ‘ 𝐶 )  =  ∅  ↔  ∃ ℎ ℎ  ∈  ( ZeroO ‘ 𝐶 ) ) | 
						
							| 8 | 2 | ringccat | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 10 |  | iszeroi | ⊢ ( ( 𝐶  ∈  Cat  ∧  ℎ  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 12 | 1 2 3 4 | zrtermoringc | ⊢ ( 𝜑  →  𝑍  ∈  ( TermO ‘ 𝐶 ) ) | 
						
							| 13 | 1 5 2 | irinitoringc | ⊢ ( 𝜑  →  ℤring  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 14 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  𝐶  ∈  Cat ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  ℎ  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  ℤring  ∈  ( InitO ‘ 𝐶 ) ) | 
						
							| 17 | 14 15 16 | initoeu1w | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring ) | 
						
							| 18 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  𝐶  ∈  Cat ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  𝑍  ∈  ( TermO ‘ 𝐶 ) ) | 
						
							| 20 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  ℎ  ∈  ( TermO ‘ 𝐶 ) ) | 
						
							| 21 | 18 19 20 | termoeu1w | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ ) | 
						
							| 22 |  | cictr | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  ∧  ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring )  →  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℤring ) | 
						
							| 23 | 9 22 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  ∧  ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring )  →  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℤring ) | 
						
							| 24 |  | eqid | ⊢ ( Iso ‘ 𝐶 )  =  ( Iso ‘ 𝐶 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 26 | 3 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 27 | 4 26 | elind | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 28 | 2 25 1 | ringcbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 29 | 27 28 | eleqtrrd | ⊢ ( 𝜑  →  𝑍  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 30 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ℤring  ∈  Ring ) | 
						
							| 32 | 5 31 | elind | ⊢ ( 𝜑  →  ℤring  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 33 | 32 28 | eleqtrrd | ⊢ ( 𝜑  →  ℤring  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 34 | 24 25 9 29 33 | cic | ⊢ ( 𝜑  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℤring  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) ) | 
						
							| 35 |  | n0 | ⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) | 
						
							| 36 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 37 | 25 36 24 9 29 33 | isohom | ⊢ ( 𝜑  →  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ⊆  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring ) ) | 
						
							| 38 |  | ssn0 | ⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ⊆  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  ∧  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅ )  →  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  ≠  ∅ ) | 
						
							| 39 | 2 25 1 36 29 33 | ringchom | ⊢ ( 𝜑  →  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  =  ( 𝑍  RingHom  ℤring ) ) | 
						
							| 40 | 39 | neeq1d | ⊢ ( 𝜑  →  ( ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  ≠  ∅  ↔  ( 𝑍  RingHom  ℤring )  ≠  ∅ ) ) | 
						
							| 41 |  | zringnzr | ⊢ ℤring  ∈  NzRing | 
						
							| 42 |  | nrhmzr | ⊢ ( ( 𝑍  ∈  ( Ring  ∖  NzRing )  ∧  ℤring  ∈  NzRing )  →  ( 𝑍  RingHom  ℤring )  =  ∅ ) | 
						
							| 43 | 3 41 42 | sylancl | ⊢ ( 𝜑  →  ( 𝑍  RingHom  ℤring )  =  ∅ ) | 
						
							| 44 |  | eqneqall | ⊢ ( ( 𝑍  RingHom  ℤring )  =  ∅  →  ( ( 𝑍  RingHom  ℤring )  ≠  ∅  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  ( ( 𝑍  RingHom  ℤring )  ≠  ∅  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 46 | 40 45 | sylbid | ⊢ ( 𝜑  →  ( ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  ≠  ∅  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 47 | 38 46 | syl5com | ⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ⊆  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  ∧  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅ )  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 48 | 47 | expcom | ⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅  →  ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ⊆  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) | 
						
							| 49 | 48 | com13 | ⊢ ( 𝜑  →  ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ⊆  ( 𝑍 ( Hom  ‘ 𝐶 ) ℤring )  →  ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) | 
						
							| 50 | 37 49 | mpd | ⊢ ( 𝜑  →  ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  ≠  ∅  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 51 | 35 50 | biimtrrid | ⊢ ( 𝜑  →  ( ∃ 𝑓 𝑓  ∈  ( 𝑍 ( Iso ‘ 𝐶 ) ℤring )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 52 | 34 51 | sylbid | ⊢ ( 𝜑  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 53 | 52 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  ∧  ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring )  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 54 | 23 53 | mpd | ⊢ ( ( 𝜑  ∧  𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  ∧  ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) | 
						
							| 55 | 54 | 3exp | ⊢ ( 𝜑  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) | 
						
							| 56 | 55 | a1dd | ⊢ ( 𝜑  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  ( 𝑍 (  ≃𝑐  ‘ 𝐶 ) ℎ  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 58 | 21 57 | mpd | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  ∧  𝑍  ∈  ( TermO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) | 
						
							| 59 | 58 | exp31 | ⊢ ( 𝜑  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 60 | 59 | com34 | ⊢ ( 𝜑  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 61 | 60 | com25 | ⊢ ( 𝜑  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  ( ℎ (  ≃𝑐  ‘ 𝐶 ) ℤring  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 63 | 17 62 | mpd | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  ∧  ℤring  ∈  ( InitO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 64 | 63 | ex | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 65 | 64 | com25 | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( InitO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( TermO ‘ 𝐶 )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 66 | 65 | expimpd | ⊢ ( 𝜑  →  ( ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 67 | 66 | com23 | ⊢ ( 𝜑  →  ( ℎ  ∈  ( Base ‘ 𝐶 )  →  ( ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) ) | 
						
							| 68 | 67 | impd | ⊢ ( 𝜑  →  ( ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 69 | 68 | com24 | ⊢ ( 𝜑  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) ) | 
						
							| 70 | 13 69 | mpd | ⊢ ( 𝜑  →  ( 𝑍  ∈  ( TermO ‘ 𝐶 )  →  ( ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) ) | 
						
							| 71 | 12 70 | mpd | ⊢ ( 𝜑  →  ( ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( ( ℎ  ∈  ( Base ‘ 𝐶 )  ∧  ( ℎ  ∈  ( InitO ‘ 𝐶 )  ∧  ℎ  ∈  ( TermO ‘ 𝐶 ) ) )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 73 | 11 72 | mpd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) | 
						
							| 74 | 73 | expcom | ⊢ ( ℎ  ∈  ( ZeroO ‘ 𝐶 )  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 75 | 74 | exlimiv | ⊢ ( ∃ ℎ ℎ  ∈  ( ZeroO ‘ 𝐶 )  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 76 | 7 75 | sylbi | ⊢ ( ¬  ( ZeroO ‘ 𝐶 )  =  ∅  →  ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) ) | 
						
							| 77 | 6 76 | pm2.61i | ⊢ ( 𝜑  →  ( ZeroO ‘ 𝐶 )  =  ∅ ) |