| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzin.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
nzin.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
dvdszrcl |
⊢ ( 𝑀 ∥ 𝑛 → ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 4 |
|
dvdszrcl |
⊢ ( 𝑁 ∥ 𝑛 → ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 5 |
3 4
|
anim12i |
⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
| 6 |
|
anandir |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
| 7 |
5 6
|
sylibr |
⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) ) |
| 8 |
7
|
ancomd |
⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) |
| 9 |
|
lcmdvds |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 10 |
9
|
3expb |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 11 |
8 10
|
mpcom |
⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) |
| 12 |
|
elin |
⊢ ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ∧ 𝑛 ∈ ( ∥ “ { 𝑁 } ) ) ) |
| 13 |
|
reldvds |
⊢ Rel ∥ |
| 14 |
|
elrelimasn |
⊢ ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ↔ 𝑀 ∥ 𝑛 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ↔ 𝑀 ∥ 𝑛 ) |
| 16 |
|
elrelimasn |
⊢ ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ 𝑛 ) ) |
| 17 |
13 16
|
ax-mp |
⊢ ( 𝑛 ∈ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ 𝑛 ) |
| 18 |
15 17
|
anbi12i |
⊢ ( ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ∧ 𝑛 ∈ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
| 19 |
12 18
|
bitri |
⊢ ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
| 20 |
|
elrelimasn |
⊢ ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 21 |
13 20
|
ax-mp |
⊢ ( 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) |
| 22 |
11 19 21
|
3imtr4i |
⊢ ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) → 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) |
| 23 |
22
|
ssriv |
⊢ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ⊆ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ⊆ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) |
| 25 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 26 |
1 2 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 28 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 29 |
1 2 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 30 |
29
|
nn0zd |
⊢ ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
| 31 |
30 1
|
nzss |
⊢ ( 𝜑 → ( ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑀 } ) ↔ 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 32 |
27 31
|
mpbird |
⊢ ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑀 } ) ) |
| 33 |
26
|
simprd |
⊢ ( 𝜑 → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 34 |
30 2
|
nzss |
⊢ ( 𝜑 → ( ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 35 |
33 34
|
mpbird |
⊢ ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑁 } ) ) |
| 36 |
32 35
|
ssind |
⊢ ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ) |
| 37 |
24 36
|
eqssd |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) = ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ) |