Metamath Proof Explorer


Theorem nznngen

Description: All positive integers in the set of multiples ofn, nℤ, are the absolute value ofn or greater. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypothesis nznngen.n ( 𝜑𝑁 ∈ ℤ )
Assertion nznngen ( 𝜑 → ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ⊆ ( ℤ ‘ ( abs ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 nznngen.n ( 𝜑𝑁 ∈ ℤ )
2 reldvds Rel ∥
3 relimasn ( Rel ∥ → ( ∥ “ { 𝑁 } ) = { 𝑥𝑁𝑥 } )
4 2 3 ax-mp ( ∥ “ { 𝑁 } ) = { 𝑥𝑁𝑥 }
5 4 ineq1i ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) = ( { 𝑥𝑁𝑥 } ∩ ℕ )
6 dfrab2 { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } = ( { 𝑥𝑁𝑥 } ∩ ℕ )
7 5 6 eqtr4i ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) = { 𝑥 ∈ ℕ ∣ 𝑁𝑥 }
8 7 eleq2i ( 𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ↔ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } )
9 rabid ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } ↔ ( 𝑥 ∈ ℕ ∧ 𝑁𝑥 ) )
10 nnz ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ )
11 absdvdsb ( ( 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑁𝑥 ↔ ( abs ‘ 𝑁 ) ∥ 𝑥 ) )
12 1 10 11 syl2an ( ( 𝜑𝑥 ∈ ℕ ) → ( 𝑁𝑥 ↔ ( abs ‘ 𝑁 ) ∥ 𝑥 ) )
13 zabscl ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ )
14 1 13 syl ( 𝜑 → ( abs ‘ 𝑁 ) ∈ ℤ )
15 dvdsle ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) )
16 14 15 sylan ( ( 𝜑𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) )
17 12 16 sylbid ( ( 𝜑𝑥 ∈ ℕ ) → ( 𝑁𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) )
18 17 impr ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑁𝑥 ) ) → ( abs ‘ 𝑁 ) ≤ 𝑥 )
19 9 18 sylan2b ( ( 𝜑𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } ) → ( abs ‘ 𝑁 ) ≤ 𝑥 )
20 9 simplbi ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } → 𝑥 ∈ ℕ )
21 20 nnzd ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } → 𝑥 ∈ ℤ )
22 eluz ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ ‘ ( abs ‘ 𝑁 ) ) ↔ ( abs ‘ 𝑁 ) ≤ 𝑥 ) )
23 14 21 22 syl2an ( ( 𝜑𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } ) → ( 𝑥 ∈ ( ℤ ‘ ( abs ‘ 𝑁 ) ) ↔ ( abs ‘ 𝑁 ) ≤ 𝑥 ) )
24 19 23 mpbird ( ( 𝜑𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁𝑥 } ) → 𝑥 ∈ ( ℤ ‘ ( abs ‘ 𝑁 ) ) )
25 8 24 sylan2b ( ( 𝜑𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ) → 𝑥 ∈ ( ℤ ‘ ( abs ‘ 𝑁 ) ) )
26 25 ex ( 𝜑 → ( 𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) → 𝑥 ∈ ( ℤ ‘ ( abs ‘ 𝑁 ) ) ) )
27 26 ssrdv ( 𝜑 → ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ⊆ ( ℤ ‘ ( abs ‘ 𝑁 ) ) )