| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nznngen.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 2 |
|
reldvds |
⊢ Rel ∥ |
| 3 |
|
relimasn |
⊢ ( Rel ∥ → ( ∥ “ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ∥ “ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } |
| 5 |
4
|
ineq1i |
⊢ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) = ( { 𝑥 ∣ 𝑁 ∥ 𝑥 } ∩ ℕ ) |
| 6 |
|
dfrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } = ( { 𝑥 ∣ 𝑁 ∥ 𝑥 } ∩ ℕ ) |
| 7 |
5 6
|
eqtr4i |
⊢ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) = { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } |
| 8 |
7
|
eleq2i |
⊢ ( 𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ↔ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } ) |
| 9 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } ↔ ( 𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥 ) ) |
| 10 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
| 11 |
|
absdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑁 ∥ 𝑥 ↔ ( abs ‘ 𝑁 ) ∥ 𝑥 ) ) |
| 12 |
1 10 11
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑁 ∥ 𝑥 ↔ ( abs ‘ 𝑁 ) ∥ 𝑥 ) ) |
| 13 |
|
zabscl |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) ∈ ℤ ) |
| 15 |
|
dvdsle |
⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) ) |
| 16 |
14 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) ) |
| 17 |
12 16
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑁 ∥ 𝑥 → ( abs ‘ 𝑁 ) ≤ 𝑥 ) ) |
| 18 |
17
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥 ) ) → ( abs ‘ 𝑁 ) ≤ 𝑥 ) |
| 19 |
9 18
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } ) → ( abs ‘ 𝑁 ) ≤ 𝑥 ) |
| 20 |
9
|
simplbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } → 𝑥 ∈ ℕ ) |
| 21 |
20
|
nnzd |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } → 𝑥 ∈ ℤ ) |
| 22 |
|
eluz |
⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ↔ ( abs ‘ 𝑁 ) ≤ 𝑥 ) ) |
| 23 |
14 21 22
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } ) → ( 𝑥 ∈ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ↔ ( abs ‘ 𝑁 ) ≤ 𝑥 ) ) |
| 24 |
19 23
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥 } ) → 𝑥 ∈ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) |
| 25 |
8 24
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) ) |
| 27 |
26
|
ssrdv |
⊢ ( 𝜑 → ( ( ∥ “ { 𝑁 } ) ∩ ℕ ) ⊆ ( ℤ≥ ‘ ( abs ‘ 𝑁 ) ) ) |